Sains Malaysiana 53(9)(2024): 3113-3123
http://doi.org/10.17576/jsm-2024-5309-16
Electrosynthesis of Anisotropic Biogenic Silver
Nanoparticles as a Promising Antibacterial Agent using Stachytarpheta
jamaicensis Leaf Extract
(Elektrosintesis
Nanozarah Perak Biogen Anisotropik sebagai Agen Antibakteria yang Berpotensi
menggunakan Ekstrak Daun Stachytarpheta jamaicensis)
DHONY HERMANTO1,*, NURUL ISMILLAYLI1,
THIFFANY A. L. WIRANATASARI1, MUDASIR MUDASIR2, DWI
SISWANTA2, BAMBANG KUSWANDI3, SISWOYO SISWOYO4,
SUPRAPTO SUPRAPTO5 & DIDIK PRASETYOKO5
1Department of Chemistry, Faculty of Mathematics and
Natural Sciences, University of Mataram, Jl. Majapahit 62 Mataram, West Nusa
Tenggara 83125, Indonesia
2Department of Chemistry, Faculty of Mathematics and
Natural Sciences, University of Gadjah Mada, Sekip Utara BLS 21 Sleman,
Yogyakarta 55281, Indonesia
3Chemo and Biosensor Group, Faculty of Pharmacy,
University of Jember, Jl. Kalimantan 37 Jember, East Java 68121, Indonesia
4Department of Chemistry, Faculty of Mathematics and
Natural Sciences, University of Jember, Jl. Kalimantan 37 Jember, East Java
68121, Indonesia
5Department of Chemistry, Faculty of Science and Data
Analytics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin 175 Surabaya,
East Java 60111, Indonesia
Diserahkan: 11 Mei 2024/Diterima: 10 Julai 2024
Abstract
Antibiotic-resistant bacteria provide a great
opportunity to use silver nanoparticles (AgNPs) as potential antibiotic
replacements. This work utilized Stachytarpheta jamaicensis leaf extract
(SJLE)-mediated electrosynthesis of biogenic AgNPs. By using two silver rods
and SJLE as the electrolysis medium, biogenic AgNP is produced through
electrosynthesis. The properties of the formed AgNPs and SJLE phytochemical
composition were examined. The disc diffusion method was utilized to evaluate
AgNPs' antibacterial efficacy against Escherichia coli and Staphylococcus
aureus. The high amount of phenolics, flavonoids, and tannins in SLJE
provides biomolecules rich in -OH and carbonyl groups, allowing SLJE to have
antimicrobial effects as well as act as a capping agent and bioreductor during
electrosynthesis. The presence of functional groups from various phytochemicals
leads to the formation of anisotropic AgNP crystals with a size of 38.22 ±
13.06 nm and high purity (95.75 ± 0.43%). Antibacterial activity tests against E.
coli and S. aureus show that anisotropic biogenic AgNPs outperformed
spherical AgNPs, probably due to the angular AgNPs' ease of penetration into
bacterial cell walls. The characteristics of the AgNPs developed induced
outstanding antibacterial efficacy against E. coli and S. aureus.
Thus, SLJE-based electrosynthesis provides a synergistic synthetic design of
AgNPs as antibacterial agents with several potential long-term advantages,
including high purity, fast synthesis, low cost, absence of hazardous
ingredients, and simplicity in scaling up.
Keywords: Anisotropic; antibacterial;
biogenic AgNP; electrosynthesis; Stachytarpheta jamaicensis
Abstrak
Bakteria rintang antibiotik
memberikan peluang yang baik untuk penggunaan nanozarah perak (AgNPs) yang
berpotensi sebagai pengganti antibiotik. Kajian ini menggunakan ekstrak daun Stachytarpheta
jamaicensis (SJLE) - pengantara elektrosintesis biogen AgNPs. Dengan
menggunakan dua rod perak dan SJLE sebagai medium elektrolisis, AgNP biogen
dihasilkan melalui elektrosintesis. Ciri AgNPs dan komposisi fitokimia SJLE
yang terbentuk telah dikaji. Kaedah diffusi cakera digunakan untuk menilai
keberkesanan antibakteria AgNPs terhadap Escherichia coli dan Staphylococcus
aureus. Jumlah fenol, flavonoid dan tanin yang tinggi dalam SLJE
menyediakan biomolekul yang kaya dengan -OH dan kumpulan karbonil, membolehkan
SLJE mempunyai kesan antimikrob serta bertindak sebagai agen penghalang dan
bioreduktor semasa elektrosintesis. Kehadiran kumpulan berfungsi daripada
pelbagai fitokimia membawa kepada pembentukan kristal AgNP anisotropik dengan
saiz 38.22 ± 13.06 nm dan ketulenan yang tinggi (95.75 ± 0.43%). Ujian aktiviti
antibakteria terhadap E. coli dan S. aureus menunjukkan bahawa
AgNPs biogen anisotropik melebihi AgNP sferik, disebabkan oleh AgNPS mempunyai
sudut yang mudah ditembusi ke dalam dinding sel bakteria. Ciri AgNPs yang
dibangunkan menyebabkan keberkesanan antibakteria yang luar biasa terhadap E.
coli dan S. aureus. Oleh itu, elektrosintesis berasaskan SLJE
menyediakan reka bentuk sintetik sinergistik AgNPs sebagai agen antibakteria
dengan beberapa kelebihan jangka panjang yang berpotensi, termasuk kemurnian
yang tinggi, sintesis yang cepat, kos yang rendah, ketiadaan bahan-bahan
berbahaya dan kesederhanaan dalam skala.
Kata kunci: AgNP biogenik;
anisotropik; antibakteria; elektrosintesis; Stachytarpheta jamaicensis
RUJUKAN
Alowaiesh, B.F., Alhaithloul,
H.A.S., Saad, A.M. & Hassanin, A.A. 2023. Green biogenic of silver
nanoparticles using polyphenolic extract of olive leaf wastes with a focus on
their anticancer and antimicrobial activities. Plants 12(6): 1410.
Ashok, P.K. & Upadhyaya, K.
2012. Tannins are astringent. Journal of
Pharmacognosy and Phytochemistry 1(3): 45-50.
Cheon, J.M., Lee, J.H., Song, Y.
& Kim, J. 2011. Synthesis of Ag nanoparticles using an electrolysis method
and application to inkjet printing. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 389(1-3): 175-179.
Cueva, C., Gil-Sánchez, I.,
Ayuda-Durán, B., González-Manzano, S., González-Paramás, A.M., Santos-Buelga,
C., Bartolomé, B. & Moreno-Arribas, M.V. 2017. An integrated view of the
effects of wine polyphenols and their relevant metabolites on gut and host
health. Molecules 22(1): 99.
Dos Santos, C.A., Seckler, M.M.,
Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A. & Rai, M.
2014. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences 103(7): 1931-1944.
Fatimah, I. 2016. Green
synthesis of silver nanoparticles using extract of Parkia speciosa Hassk
pods assisted by microwave irradiation. Journal
of Advanced Research 7(6): 961-969.
Fatimah, I. & Mutiara,
N.A.L. 2016. Biosynthesis of silver nanoparticles using Putri Malu (Mimosa
pudica) leaves extract and microwave irradiation method. Molekul 11(2): 288-298.
Fatimah, I., Hidayat, H.,
Nugroho, B.H. & Husein, S. 2020. Ultrasound-assisted biosynthesis of silver
and gold nanoparticles using Clitoria ternatea flower. South African Journal of Chemical
Engineering 34(1): 97-106.
Firdhouse, M.J. & Lalitha,
P. 2015. Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology 2015: 29526.
Ghatage, M.M., Mane, P.A.,
Gambhir, R.P., Parkhe, V.S., Kamble, P.A., Lokhande, C.D. & Tiwari, A.P.
2023. Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial, and photocatalytic
properties. Applied Surface Science Advances 16: 100426.
Hermanto, D., Ismillayli, N.,
Hamdiani, S., Kamali, S.R., Wirawan, R., Muliasari, H. & Sanjaya, R.K.
2024a. Inhibitive determination of organophosphate pesticides using
acetylcholinesterase and silver nanoparticle as colorimetric probe. Environmental Engineering Research 29(4): 230503.
Hermanto, D., Ismillayli, N.,
Fatwa, D.H., Zuryati, U.K., Muliasari, H., Wirawan, R., Prasetyoko, D. &
Suprapto, S. 2024b. Bio-mediated electrochemically synthesis of silver
nanoparticles using green tea (Camellia sinensis) leaves extract and
their antibacterial activity. South
African Journal of Chemical Engineering 47(1): 136-141.
Hermanto, D., Ismillayli, N.,
Muliasari, H., Wirawan, R. & Kamali, S.R. 2024c. Silver-based plasmonic
nanoparticles for biosensor organophosphate pesticides using a single film
containing acetylcholinesterase/choline oxidase. Global Journal of Environmental Science and Management 10(1):
39-50.
Hermanto, D., Ismillayli, N.,
Hamdiani, S., Kamali, S.R., Wirawan, R. & Muliasari, H. 2023a. Paper
biosensors utilize silver nanoparticles for onsite pesticide residue detection. E3S Web of Conferences 467: 01026.
Hermanto, D., Ismillayli, N.,
Irmawanti, I., Fathulloh, I., Cahyani, D.N., Zuryati, U.K., Muliasari, H. &
Wirawan, R. 2023b. Electrochemically synthesized biogenic silver nanoparticles
using green tea extract as a promising antioxidant. Karbala International Journal of Modern Sciences 9(1): 80-88.
Hoang, V.T., Dinh, N.X., Pham,
T.N., Hoang, T.V., Tuan, P.A., Huy, T.Q. & Le, A.T. 2021. Scalable
electrochemical synthesis of novel biogenic silver nanoparticles and its
application to high-sensitive detection of 4-nitrophenol in aqueous system. Advances in Polymer Technology 2021:
6646219.
Huang, Z., Jiang, H., Liu, P.,
Sun, J., Guo, D., Shan, J. & Gu, N. 2015. Continuous synthesis of
size-tunable silver nanoparticles by a green electrolysis method and multi-electrode
design for high yield. Journal of
Materials Chemistry A 3(5): 1925-1929.
Hussain, S. & Khan, Z. 2014.
Epigallocatechin-3-gallate-capped Ag nanoparticles: Preparation and
characterization. Bioprocess and
Biosystems Engineering 37: 1221-1231.
Ismillayli, N., Suprapto, S.,
Santoso, E., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil, A.A., Hermanto, D.
& Prasetyoko, D. 2024a. Microwave-assisted synthesis of silver
nanoparticles as a colorimetric sensor for hydrogen peroxide. RSC Advances 14(10): 6815-6822.
Ismillayli, N., Suprapto, S.,
Santoso, E., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil, A.A., Hermanto, D.
& Prasetyoko, D. 2024b. The role of pH-induced tautomerism of
polyvinylpyrrolidone on the size, stability, and antioxidant and antibacterial
activities of silver nanoparticles synthesized using microwave radiation. RSC Advances 14(7): 4509-4517.
Kaabipour, S. & Hemmati, S.
2021. A review on the green and sustainable synthesis of silver nanoparticles
and one-dimensional silver nanostructures. Beilstein
Journal of Nanotechnology 12(1): 102-136.
Khan, A.U., Yuan, Q., Khan,
Z.U.H., Ahmad, A., Khan, F.U., Tahir, K., Shakeel, M. & Ullah, S. 2018. An
eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel:
Antiproliferative response against human breast cancer cell line MCF-7,
antioxidant and photocatalytic deprivation of methylene blue. Journal of Photochemistry and Photobiology
B: Biology 183: 367-373.
Khodashenas, B. & Ghorbani,
H.R. 2019. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry 12(8):
1823-1838.
Kumar, B., Smita, K., Cumbal,
L., Debut, A., Camacho, J., Hernández-Gallegos, E., Chávez-López, M.D.G.,
Grijalva, M., Angulo, Y. & Rosero, G. 2015. Pomosynthesis and biological
activity of silver nanoparticles using Passiflora tripartita fruit
extracts. Advanced Materials Letters 6(2): 127-132.
Kumari, R., Barsainya, M. &
Singh, D.P. 2017. Biogenic synthesis of silver nanoparticle by using secondary
metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environmental Science and Pollution Research 24: 4645-4654.
Kuntyi, O., Mazur, A., Kytsya,
A., Karpenko, O., Bazylyak, L., Mertsalo, I., Pokynbroda, T. & Prokopalo,
A. 2020. Electrochemical synthesis of silver nanoparticles in solutions of
rhamnolipid. Micro and Nano Letters 15(12): 802-807.
Loo, Y.Y., Chieng, B.W.,
Nishibuchi, M. & Radu, S. 2012. Synthesis of silver nanoparticles by using
tea leaf extract from Camellia sinensis. International Journal of Nanomedicine 7: 4263-4267.
Meva, F.E., Mbeng, J.O.A.,
Ebongue, C.O., Schlüsener, C., Kökҫam-Demir, Ü., Ntoumba, A.A., Kedi,
P.B.E., Elanga, E., Loudang, E.R.N., Nko’o, M.H.J., Tchoumbi, E., Deli, V.,
Nanga, C.C., Mpondo, E.A.M. & Janiak, C. 2019. Stachytarpheta
cayennensis aqueous extract, a new bioreactor towards silver nanoparticles
for biomedical applications. Journal of
Biomaterials and Nanobiotechnology 10(02): 102-119.
Misirli, G.M., Sridharan, K.
& Abrantes, S.M.P. 2021. A review on nanostructured silver as a basic
ingredient in medicine: Physicochemical parameters and characterization. Beilstein Journal of Nanotechnology 12(1): 440-461.
Muthaiah, S., Bhatia, A. &
Kannan, M. 2020. Stability of metal complexes. In Stability and Applications of Coordination Compounds. Intechopen.
Nazir, R., Zaffar, M.R. &
Amin, I. 2019. Bacterial biofilms: The remarkable heterogeneous biological
communities and nitrogen fixing microorganisms in lakes. In Freshwater Microbiology, edited by
Bandh, S.A., Shafi, S. & Shameem, N. Massachusetts: Academic Press. pp.
307-340.
Nguyen, C., Savouret, J.F.,
Widerak, M., Corvol, M.T. & Rannou, F. 2017. Resveratrol, potential
therapeutic interest in joint disorders: A critical narrative review. Nutrients 9(1): 45.
Ololade, Z.S., Ogunmola, O.O.,
Kuyooro, S.E. & Abiona, O.O. 2017. Stachytarpheta jamaicensis leaf
extract: Chemical composition, antioxidant, anti-arthritic, anti-inflammatory,
and bactericidal potentials. Journal of
Scientific and Innovative Research 6(4): 119-125.
Patle, T.K., Shrivas, K.,
Kurrey, R., Upadhyay, S., Jangde, R. & Chauhan, R. 2020. Phytochemical
screening and determination of phenolics and flavonoids in Dillenia
pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 242: 118717.
Rai, M., Yadav, A. & Gade,
A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27(1): 76-83.
Ramadhani, P.N. & Kurniati,
I.D. 2022. Antimicrobial activity of Pecut Kuda leaf extract (Stachytarpheta
jamaicensis (L. Vahl) against Mycobacterium smegmatis. Mutiara Medika 23(1): 21-27.
Ruma, O.C. & Zipagang, T.B.
2015. Determination of secondary metabolites and antibacterial property of
extract from the leaves of Stachytarpheta jamaicensis (L.) Vahl. Journal of Medicinal Plants and Studies 3(4): 79-81.
Shah, M., Fawcett, D., Sharma,
S., Tripathy, S.K. & Poinern, G.E.J. 2015. Green synthesis of metallic
nanoparticles via biological entities. Materials 8(11): 7278-7308.
Siakavella, I.K., Lamari, F.,
Papoulis, D., Orkoula, M., Gkolfi, P., Lykouras, M., Avgoustakis, K. &
Hatziantoniou, S. 2020. Effect of plant extracts on the characteristics of
silver nanoparticles for topical application. Pharmaceutics 12(12): 1244.
Sun, Q., Cai, X., Li, J., Zheng,
M., Chen, Z. & Yu, C.P. 2014. Green synthesis of silver nanoparticles using
tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 444: 226-231.
Tang, S. & Zheng, J. 2018.
Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials 7(13): e1701503.
Tanvir, F., Yaqub, A., Tanvir,
S. & Anderson, W.A. 2017. Poly-L-arginine coated silver nanoprisms and
their anti-bacterial properties. Nanomaterials 7(10): 296.
Thammawithan, S., Siritongsuk,
P., Nasompag, S., Daduang, S., Klaynongsruang, S., Prapasarakul, N. &
Patramanon, R. 2021. A biological study of anisotropic silver nanoparticles and
their antimicrobial application for topical use. Veterinary Sciences 8(9): 177.
Tsou, C. & Yang, R. 2020.
Low-cost green synthesis of silver nanoparticles using Taiwan oolong tea extract. In Importance & Applications
of Nanotechnology. MedDocs
e-Books. pp. 1-5.
Wang, L., Hu, C. & Shao, L.
2017. The antimicrobial activity of nanoparticles: Present situation and
prospects for the future. International
Journal of Nanomedicine 12: 1227-1249.
Wirwis, A. & Sadowski, Z.
2023. Green synthesis of silver nanoparticles: Optimizing green tea leaf
extraction for enhanced physicochemical properties. ACS Omega 8(33): 30532-30549.
Yanilkin, V.V., Fazleeva, R.R.,
Nasretdinova, G.R., Nastapova, N.V. & Osin, Y.N. 2018. Methylviologen
mediated electrosynthesis of silver nanoparticles in a water medium. Effect of
chain length and concentration of poly (N-vinylpyrrolidone) on particle size. New Materials, Compounds and Applications 2(1): 28-41.
*Pengarang untuk surat-menyurat; email: dhony.hermanto@unram.ac.id
|