Sains Malaysiana 53(9)(2024): 3113-3123

http://doi.org/10.17576/jsm-2024-5309-16

 

Electrosynthesis of Anisotropic Biogenic Silver Nanoparticles as a Promising Antibacterial Agent using Stachytarpheta jamaicensis Leaf Extract

(Elektrosintesis Nanozarah Perak Biogen Anisotropik sebagai Agen Antibakteria yang Berpotensi menggunakan Ekstrak Daun Stachytarpheta jamaicensis)

 

DHONY HERMANTO1,*, NURUL ISMILLAYLI1, THIFFANY A. L. WIRANATASARI1, MUDASIR MUDASIR2, DWI SISWANTA2, BAMBANG KUSWANDI3, SISWOYO SISWOYO4, SUPRAPTO SUPRAPTO5 & DIDIK PRASETYOKO5

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit 62 Mataram, West Nusa Tenggara 83125, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Sekip Utara BLS 21 Sleman, Yogyakarta 55281, Indonesia

3Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37 Jember, East Java 68121, Indonesia

4Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Jember, Jl. Kalimantan 37 Jember, East Java 68121, Indonesia

5Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin 175 Surabaya, East Java 60111, Indonesia

 

Diserahkan: 11 Mei 2024/Diterima: 10 Julai 2024

 

Abstract

Antibiotic-resistant bacteria provide a great opportunity to use silver nanoparticles (AgNPs) as potential antibiotic replacements. This work utilized Stachytarpheta jamaicensis leaf extract (SJLE)-mediated electrosynthesis of biogenic AgNPs. By using two silver rods and SJLE as the electrolysis medium, biogenic AgNP is produced through electrosynthesis. The properties of the formed AgNPs and SJLE phytochemical composition were examined. The disc diffusion method was utilized to evaluate AgNPs' antibacterial efficacy against Escherichia coli and Staphylococcus aureus. The high amount of phenolics, flavonoids, and tannins in SLJE provides biomolecules rich in -OH and carbonyl groups, allowing SLJE to have antimicrobial effects as well as act as a capping agent and bioreductor during electrosynthesis. The presence of functional groups from various phytochemicals leads to the formation of anisotropic AgNP crystals with a size of 38.22 ± 13.06 nm and high purity (95.75 ± 0.43%). Antibacterial activity tests against E. coli and S. aureus show that anisotropic biogenic AgNPs outperformed spherical AgNPs, probably due to the angular AgNPs' ease of penetration into bacterial cell walls. The characteristics of the AgNPs developed induced outstanding antibacterial efficacy against E. coli and S. aureus. Thus, SLJE-based electrosynthesis provides a synergistic synthetic design of AgNPs as antibacterial agents with several potential long-term advantages, including high purity, fast synthesis, low cost, absence of hazardous ingredients, and simplicity in scaling up.

 

Keywords: Anisotropic; antibacterial; biogenic AgNP; electrosynthesis; Stachytarpheta jamaicensis

 

Abstrak

Bakteria rintang antibiotik memberikan peluang yang baik untuk penggunaan nanozarah perak (AgNPs) yang berpotensi sebagai pengganti antibiotik. Kajian ini menggunakan ekstrak daun Stachytarpheta jamaicensis (SJLE) - pengantara elektrosintesis biogen AgNPs. Dengan menggunakan dua rod perak dan SJLE sebagai medium elektrolisis, AgNP biogen dihasilkan melalui elektrosintesis. Ciri AgNPs dan komposisi fitokimia SJLE yang terbentuk telah dikaji. Kaedah diffusi cakera digunakan untuk menilai keberkesanan antibakteria AgNPs terhadap Escherichia coli dan Staphylococcus aureus. Jumlah fenol, flavonoid dan tanin yang tinggi dalam SLJE menyediakan biomolekul yang kaya dengan -OH dan kumpulan karbonil, membolehkan SLJE mempunyai kesan antimikrob serta bertindak sebagai agen penghalang dan bioreduktor semasa elektrosintesis. Kehadiran kumpulan berfungsi daripada pelbagai fitokimia membawa kepada pembentukan kristal AgNP anisotropik dengan saiz 38.22 ± 13.06 nm dan ketulenan yang tinggi (95.75 ± 0.43%). Ujian aktiviti antibakteria terhadap E. coli dan S. aureus menunjukkan bahawa AgNPs biogen anisotropik melebihi AgNP sferik, disebabkan oleh AgNPS mempunyai sudut yang mudah ditembusi ke dalam dinding sel bakteria. Ciri AgNPs yang dibangunkan menyebabkan keberkesanan antibakteria yang luar biasa terhadap E. coli dan S. aureus. Oleh itu, elektrosintesis berasaskan SLJE menyediakan reka bentuk sintetik sinergistik AgNPs sebagai agen antibakteria dengan beberapa kelebihan jangka panjang yang berpotensi, termasuk kemurnian yang tinggi, sintesis yang cepat, kos yang rendah, ketiadaan bahan-bahan berbahaya dan kesederhanaan dalam skala.

 

Kata kunci: AgNP biogenik; anisotropik; antibakteria; elektrosintesis; Stachytarpheta jamaicensis

 

RUJUKAN

Alowaiesh, B.F., Alhaithloul, H.A.S., Saad, A.M. & Hassanin, A.A. 2023. Green biogenic of silver nanoparticles using polyphenolic extract of olive leaf wastes with a focus on their anticancer and antimicrobial activities. Plants 12(6): 1410.

Ashok, P.K. & Upadhyaya, K. 2012. Tannins are astringent. Journal of Pharmacognosy and Phytochemistry 1(3): 45-50.

Cheon, J.M., Lee, J.H., Song, Y. & Kim, J. 2011. Synthesis of Ag nanoparticles using an electrolysis method and application to inkjet printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 389(1-3): 175-179.

Cueva, C., Gil-Sánchez, I., Ayuda-Durán, B., González-Manzano, S., González-Paramás, A.M., Santos-Buelga, C., Bartolomé, B. & Moreno-Arribas, M.V. 2017. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules 22(1): 99.

Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A. & Rai, M. 2014. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences 103(7): 1931-1944.

Fatimah, I. 2016. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. Journal of Advanced Research 7(6): 961-969.

Fatimah, I. & Mutiara, N.A.L. 2016. Biosynthesis of silver nanoparticles using Putri Malu (Mimosa pudica) leaves extract and microwave irradiation method. Molekul 11(2): 288-298.

Fatimah, I., Hidayat, H., Nugroho, B.H. & Husein, S. 2020. Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. South African Journal of Chemical Engineering 34(1): 97-106.

Firdhouse, M.J. & Lalitha, P. 2015. Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology 2015: 29526.

Ghatage, M.M., Mane, P.A., Gambhir, R.P., Parkhe, V.S., Kamble, P.A., Lokhande, C.D. & Tiwari, A.P. 2023. Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial, and photocatalytic properties. Applied Surface Science Advances 16: 100426.

Hermanto, D., Ismillayli, N., Hamdiani, S., Kamali, S.R., Wirawan, R., Muliasari, H. & Sanjaya, R.K. 2024a. Inhibitive determination of organophosphate pesticides using acetylcholinesterase and silver nanoparticle as colorimetric probe. Environmental Engineering Research 29(4): 230503.

Hermanto, D., Ismillayli, N., Fatwa, D.H., Zuryati, U.K., Muliasari, H., Wirawan, R., Prasetyoko, D. & Suprapto, S. 2024b. Bio-mediated electrochemically synthesis of silver nanoparticles using green tea (Camellia sinensis) leaves extract and their antibacterial activity. South African Journal of Chemical Engineering 47(1): 136-141.

Hermanto, D., Ismillayli, N., Muliasari, H., Wirawan, R. & Kamali, S.R. 2024c. Silver-based plasmonic nanoparticles for biosensor organophosphate pesticides using a single film containing acetylcholinesterase/choline oxidase. Global Journal of Environmental Science and Management 10(1): 39-50.

Hermanto, D., Ismillayli, N., Hamdiani, S., Kamali, S.R., Wirawan, R. & Muliasari, H. 2023a. Paper biosensors utilize silver nanoparticles for onsite pesticide residue detection. E3S Web of Conferences 467: 01026.

Hermanto, D., Ismillayli, N., Irmawanti, I., Fathulloh, I., Cahyani, D.N., Zuryati, U.K., Muliasari, H. & Wirawan, R. 2023b. Electrochemically synthesized biogenic silver nanoparticles using green tea extract as a promising antioxidant. Karbala International Journal of Modern Sciences 9(1): 80-88.

Hoang, V.T., Dinh, N.X., Pham, T.N., Hoang, T.V., Tuan, P.A., Huy, T.Q. & Le, A.T. 2021. Scalable electrochemical synthesis of novel biogenic silver nanoparticles and its application to high-sensitive detection of 4-nitrophenol in aqueous system. Advances in Polymer Technology 2021: 6646219.

Huang, Z., Jiang, H., Liu, P., Sun, J., Guo, D., Shan, J. & Gu, N. 2015. Continuous synthesis of size-tunable silver nanoparticles by a green electrolysis method and multi-electrode design for high yield. Journal of Materials Chemistry A 3(5): 1925-1929.

Hussain, S. & Khan, Z. 2014. Epigallocatechin-3-gallate-capped Ag nanoparticles: Preparation and characterization. Bioprocess and Biosystems Engineering 37: 1221-1231.

Ismillayli, N., Suprapto, S., Santoso, E., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil, A.A., Hermanto, D. & Prasetyoko, D. 2024a. Microwave-assisted synthesis of silver nanoparticles as a colorimetric sensor for hydrogen peroxide. RSC Advances 14(10): 6815-6822.

Ismillayli, N., Suprapto, S., Santoso, E., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil, A.A., Hermanto, D. & Prasetyoko, D. 2024b. The role of pH-induced tautomerism of polyvinylpyrrolidone on the size, stability, and antioxidant and antibacterial activities of silver nanoparticles synthesized using microwave radiation. RSC Advances 14(7): 4509-4517.

Kaabipour, S. & Hemmati, S. 2021. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology 12(1): 102-136.

Khan, A.U., Yuan, Q., Khan, Z.U.H., Ahmad, A., Khan, F.U., Tahir, K., Shakeel, M. & Ullah, S. 2018. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. Journal of Photochemistry and Photobiology B: Biology 183: 367-373.

Khodashenas, B. & Ghorbani, H.R. 2019. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry 12(8): 1823-1838.

Kumar, B., Smita, K., Cumbal, L., Debut, A., Camacho, J., Hernández-Gallegos, E., Chávez-López, M.D.G., Grijalva, M., Angulo, Y. & Rosero, G. 2015. Pomosynthesis and biological activity of silver nanoparticles using Passiflora tripartita fruit extracts. Advanced Materials Letters 6(2): 127-132.

Kumari, R., Barsainya, M. & Singh, D.P. 2017. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environmental Science and Pollution Research 24: 4645-4654.

Kuntyi, O., Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., Pokynbroda, T. & Prokopalo, A. 2020. Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro and Nano Letters 15(12): 802-807.

Loo, Y.Y., Chieng, B.W., Nishibuchi, M. & Radu, S. 2012. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. International Journal of Nanomedicine 7: 4263-4267.

Meva, F.E., Mbeng, J.O.A., Ebongue, C.O., Schlüsener, C., Kökҫam-Demir, Ü., Ntoumba, A.A., Kedi, P.B.E., Elanga, E., Loudang, E.R.N., Nko’o, M.H.J., Tchoumbi, E., Deli, V., Nanga, C.C., Mpondo, E.A.M. & Janiak, C. 2019. Stachytarpheta cayennensis aqueous extract, a new bioreactor towards silver nanoparticles for biomedical applications. Journal of Biomaterials and Nanobiotechnology 10(02): 102-119.

Misirli, G.M., Sridharan, K. & Abrantes, S.M.P. 2021. A review on nanostructured silver as a basic ingredient in medicine: Physicochemical parameters and characterization. Beilstein Journal of Nanotechnology 12(1): 440-461.

Muthaiah, S., Bhatia, A. & Kannan, M. 2020. Stability of metal complexes. In Stability and Applications of Coordination Compounds. Intechopen.

Nazir, R., Zaffar, M.R. & Amin, I. 2019. Bacterial biofilms: The remarkable heterogeneous biological communities and nitrogen fixing microorganisms in lakes. In Freshwater Microbiology, edited by Bandh, S.A., Shafi, S. & Shameem, N. Massachusetts: Academic Press. pp. 307-340.

Nguyen, C., Savouret, J.F., Widerak, M., Corvol, M.T. & Rannou, F. 2017. Resveratrol, potential therapeutic interest in joint disorders: A critical narrative review. Nutrients 9(1): 45.

Ololade, Z.S., Ogunmola, O.O., Kuyooro, S.E. & Abiona, O.O. 2017. Stachytarpheta jamaicensis leaf extract: Chemical composition, antioxidant, anti-arthritic, anti-inflammatory, and bactericidal potentials. Journal of Scientific and Innovative Research 6(4): 119-125.

Patle, T.K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R. & Chauhan, R. 2020. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 242: 118717.

Rai, M., Yadav, A. & Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27(1): 76-83.

Ramadhani, P.N. & Kurniati, I.D. 2022. Antimicrobial activity of Pecut Kuda leaf extract (Stachytarpheta jamaicensis (L. Vahl) against Mycobacterium smegmatis. Mutiara Medika 23(1): 21-27.

Ruma, O.C. & Zipagang, T.B. 2015. Determination of secondary metabolites and antibacterial property of extract from the leaves of Stachytarpheta jamaicensis (L.) Vahl. Journal of Medicinal Plants and Studies 3(4): 79-81.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S.K. & Poinern, G.E.J. 2015. Green synthesis of metallic nanoparticles via biological entities. Materials 8(11): 7278-7308.

Siakavella, I.K., Lamari, F., Papoulis, D., Orkoula, M., Gkolfi, P., Lykouras, M., Avgoustakis, K. & Hatziantoniou, S. 2020. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics 12(12): 1244.

Sun, Q., Cai, X., Li, J., Zheng, M., Chen, Z. & Yu, C.P. 2014. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 444: 226-231.

Tang, S. & Zheng, J. 2018. Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials 7(13): e1701503.

Tanvir, F., Yaqub, A., Tanvir, S. & Anderson, W.A. 2017. Poly-L-arginine coated silver nanoprisms and their anti-bacterial properties. Nanomaterials 7(10): 296.

Thammawithan, S., Siritongsuk, P., Nasompag, S., Daduang, S., Klaynongsruang, S., Prapasarakul, N. & Patramanon, R. 2021. A biological study of anisotropic silver nanoparticles and their antimicrobial application for topical use. Veterinary Sciences 8(9): 177.

Tsou, C. & Yang, R. 2020. Low-cost green synthesis of silver nanoparticles using Taiwan oolong tea extract. In Importance & Applications of Nanotechnology. MedDocs e-Books. pp. 1-5.

Wang, L., Hu, C. & Shao, L. 2017. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine 12: 1227-1249.

Wirwis, A. & Sadowski, Z. 2023. Green synthesis of silver nanoparticles: Optimizing green tea leaf extraction for enhanced physicochemical properties. ACS Omega 8(33): 30532-30549.

Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V. & Osin, Y.N. 2018. Methylviologen mediated electrosynthesis of silver nanoparticles in a water medium. Effect of chain length and concentration of poly (N-vinylpyrrolidone) on particle size. New Materials, Compounds and Applications 2(1): 28-41.

 

*Pengarang untuk surat-menyurat; email: dhony.hermanto@unram.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya